
NASA-IVV-97-009

NASA IV&V Facility, Fairmont, West Virginia

High-Performance, Reliable Multicasting: Foundations for Future

Internet Groupware Applications

John Callahan, Todd Montgomery, and Brian Whetten

July 14, 1997

This technical report is a product of the National Aeronautics and Space Administration

(NASA) Software Program, an agency wide program to promote continual improvement

of software engineering within NASA. The goals and strategies of this program are

documented in the NASA software strategic plan, July 13, 1995.

Additional information is available from the NASA Software IV&V Facility on the

World Wide Web site http:/Iwww.ivv.nasa.govl

This research was funded under cooperative Agreement #NCC 2-979 at the NASA/WVU

Software Research Laboratory.

(LONG MANUSCRIPT)

High-Performance, Reliable Multicasting: Foundations for Future

Internet Groupware Applications*

John Callahan, Todd Montgomery, Brian Whetten

{callahan,tmont }@cerc.wvu.edu, whettenQcs.berkeley.edu

NASA/West Virginia University Software IV&V Facility

January 9, 1996

Abstract

Network protocols that provide efficient, reliable, and totally-ordered message delivery to
large numbers of users will be needed to support many future Internet applications. The Reliable

Multicast Protocol (aMP) is implemented on top ofIP multicast [14] to facilitate reliable transfer

of data for replicated databases and groupware applications that will emerge on the Internet over

the next decade. This paper explores some of the basic questions and applications of reliable
multicasting in the context of the development and analysis of RMP.

1 Introduction

As the Internet continues to grow, new approaches are needed to provide large numbers of users
with efficient, concurrent, on-demand access to information. In current approaches, like the

client-server model used in the World-Wide-Web (WWW), information services are centralized
and become bottlenecks under high demand. New protocols are needed to replicate data to

multiple sites in order to distribute such demand. Replication enhances data availability and

fault tolerance by providing alternative data sources under congestion and failure conditions. In

addition to replicating databases and files, client applications will be required to "cache" more

information locally and rely on notification from information providers of subsequent changes.
New protocols for group applications can control the semantics, frequency, and granularity of

notifications and updates at the application level [2].

Reliable broadcast and multicast protocols will play major roles in the development of large-

scale replicated data systems [13]. Such protocols will be needed to maintain coherent copies
of data at multiple sites in an efficient manner [10, 9]. In the past, however, reliable multicast

protocols have had problems with performance, efficiency, and/or scalability. It has become

a widespread belief that these are inherent problems with totally ordered reliable multicast

protocols in general [27]. In reality, this misconception resulted from the fact that multicast had

to be implemented as a series of unicasts to each destination. Recent developments, however,

such as the IP Multicast [14] allow multicast datagrams to be routed efficiently to multiple

destinations over an internetwork. In the case where all destinations are on the same LAN, one

multicast packet to all destinations costs the same as a unicast packet to a single destination.

*This work is supported by NASA Grant NAG 5-2129 and NASA Cooperative Research Agreement NCCW-0040.
More information pertaining to RMP can be found at http://research, ivv.nasa.gov/projects/RMP/RMP.html

Thispaperpresentsabriefoverviewof thedetailsandpotentialapplicationsof a newap-
proach,calledthe the ReliableMulticastProtocol(RMP),that providesa scalable,totally
ordered,reliable,atomicmulticastserviceontop of anunreliablemulticastdatagramservice
suchasIP Multicast.RMPisfullyandsymmetricallydistributedsothatnositebearsanundue
portionof thecommunicationload. RMPprovidesa widerangeof guarantees,fromunreli-
abledeliveryto totallyordereddelivery,to K-resilient,majorityresilient,andtotallyresilient
atomicdelivery.Thesesemanticsareselectableona perpacketbasis.RMPprovidesmany
communicationoptions,includingvirtualsynchrony,a publisher/subscribermodelof message
delivery,aclient/servermodelof delivery,animplicitnamingservice,mutuallyexclusivehan-
dlersfor messages,andmutuallyexclusivelocks. It hascommonlybeenheldthat a large
performancepenaltymustbepaidin orderto implementtotalordering.OnSparcStation5's
ona 1250KB/secEthernet,RMPprovidestotallyorderedpacketdeliveryto onedestination
at 1070KB/secthroughputandwith4.0mspacketlatency.Theperformancestaysroughly
constantindependentof thenumberof destinations.Fortwoor moredestinationsona LAN,
RMPprovideshigherthroughputthananyprotocolthatdoesnotusemulticastor broadcast
[23,24].

aMPprovidesa robustfoundationfor manydatareplicationandgroupwareapplications.
In additionto replicateddatabasesandfilesystems,currentandpotentialapplicationsof RMP
include:

Distributed interaction simulations(DIS) . Distributedinteractivesimulation(DIS)en-
vironmentsconsistof largenumbersof autonomousandsemi-autonomousagents(i.e.,
computerprograms)that interactwithoneanotherto providerealisticscenariosformili-
tarytraining,planning,andstrategicortacticalevaluation.DISenvironmentsrelyonlocal
andwide-areanetworksasmessagehandlingsystemsto distributeinformationbetween
theseagentsin atimelyfashion.Theoverheadofmessagehandlingissubstantialsincethe
informationexchangedbetweenagentsconsistsof largevolumesofphysical,geographical,
andlogisticaldata.UsingRMP,aresearchgroupat theU.S.Army'sConstructionEngi-
neeringResearchLaboratorieshasbuilt a newDISarchitecturecalledHPCADIS,that
providesmuchhigherperformancethanotherDISarchitectures.

Multicast URLs . WearedesigningenhancedWWWserversthatcanrespondto multicast

URL requests from WWW browsers. A multicast URL (i.e., mhttp://...) is a WWW
resource that can be answered by any WWW server that provides the requested resource.

Collisions between providers are prevented because multicast URLs can be implemented

using RMP's multi-RPC feature. This feature provides remote procedure call access to

groups of servers from non-member clients. A related system, called WEBCAST, has been

developed using RMP at the University of Illinois to synchronize large numbers of WWW

browsers in distributed learning applications.

Replicated objects . Distributed object models such as the Common Object Request Broker

Architecture (CORBA) [16] will need to provide replication services between groups of

objects in order to reduce contention. RMP does not provide a general enough framework

to provide generic object replication services. To solve this problem, we are developing

a replicated objects layer and transaction model on top of RMP to provide a standard

framework that allows for customization of replications and object interoperability.

Wireless and Satellite Communications . Wireless and satellite media provide inherent

support for broadcast and multicast transmission. Experiments with RMP are underway
to analyze flow control, fault tolerance, and other customizations of RMP in such environ-

ments. Like multicasting in wired networks, wireless media provides an effective means for

"pushing" data from servers to users in high demand applications like information delivery
services [1].

RMP was developed at the NASA Independent Verification and Validation (IV&V) Facility
in Fairmont, West Virginia as testbed project to explore new test and analysis techniques on
complex, distributed software programs [3]. RMP has been extensively tested and analyzed
to increase confidence in the correctness of the protocol specification and its implementation
[7, 30]. The remainder of this paper describes some details of the protocol model, its limitations,
features, and future research directions, but proofs of protocol correctness are beyond the scope
of this paper.

2 Background

The basic RMP protocol provides what can be thought of as N-way virtual circuits, called
groups, between sets of processes connected by a multicast medium. It is fully distributed, so

that all processes play the same role in communication. While primarily using NACKs for error
detection and retransmission, RMP provides true reliability and limits the necessary buffer space
by passing a token around the members of a group.

RMP provides a wide range of reliability and ordering guarantees on packet delivery, se-
lectable on a per packet basis. In addition to unreliable and reliable but unordered quality of
service (QoS) levels, RMP can provide atomic, reliably delivery of packets ordered with respect
to each source. It can also efficiently provide delivery of packets in both total and causal order,
using causal ordering as defined in [21]. Totally ordered delivery also provides virtual synchrony,
as first defined by the ISIS project [28]. Virtual synchrony guarantees that when new members
join or leave a group these operations appear to be atomic, so that the sets of messages delivered
before and after each membership change are consistent across all sites. Using K-resilient fault
tolerance, RMP can provide total ordering and atomicity guarantees even in the face of site
failures and partitions. For a set of packets with a resilience level of K, more than K mem-

bers of a group have to simultaneously partition away or fail in order to have the possibility of
violating the total ordering and atomicity guarantees. By setting K to a number larger than
half the members of a ring and not allowing minority partitions to continue, total ordering,
atomieity, and virtual synchrony can be guaranteed in the face of any set of arbitrary partitions
and failures.

The basic RMP model of communication is a publisher/subscriber model based on textual
group names. In the absence of network partitions, any member of a group (a subscriber) will
receive all packets sent (published) to the group associated with that group name. RMP also
provides a client/server model of communication, where the servers are members of a group
and the clients are not members, but can communicate with the servers by sending packets
to the group. These packets may be simply acknowledged after being delivered to the group
with the requested QoS, or they may be responded to by a single member of the group. RMP
uses handlers to guarantee that at most one member will respond to a data packet. Each data
packet in aMP has an optional handler number associated with it. These correspond to a set of
mutually exclusive handler locks which group members may hold. The group member who holds
a given handler lock will be notified upon delivery of a data packet with this handler number
that it is supposed to respond to the request. Handler locks are provided in a very efficient way,
and can be used for any type of application that requires mutually exclusive locks shared among
a group of communicating processes.

A common belief in the research community is that totally ordered reliable multicast pro-
tocols are inherently slow. This belief has come about in large part due to the experiences
researchers have had with the early versions of ISIS, which for a long time was the only system
of this type available. ISIS has since become much faster [5], but the misconception remains.
Experience with RMP belies this concept. RMP was tested on 8 SparcStation5's on a 10 Mb/sec
(1250 KB/sec) Ethernet. In this environment, the throughput to a single destination is 1070

3

KB/sec, or 86% of the network capacity. For group communication to any group of two or

more destinations on a LAN, RMP exceeds not only the maximum throughput of TCP/IP, but
any other possible non-multicast and non-broadcast algorithm. This is because both the packet

latency and throughput of RMP stay roughly constant as the number of destinations increase,

whereas the performance of other algorithms decreases linearly. For a group with 8 destinations,

RMP has a 7.4 MB/sec aggregate throughput, which is 5.9 times the bandwidth of the support-

ing Ethernet. The throughput for RMP does not significantly change as a factor of the ordering

guarantees, but the per packet latency does. A totally ordered packet will on average have a

latency approximately twice that of an unordered or source ordered packet, and this increases

for K-resilient packets. This QoS for latency tradeoff is fundamental to distributed protocols,
which is why RMP allows this tradeoff to be made on a per packet basis. RMP demonstrates

that a fault tolerant, reliable, atomic, fully distributed, totally ordered multicast protocol can

actually achieve much better performance in group communication than systems that don't pro-
vide these features. For a detailed discussion of the performance of RMP, the reader is referred

to [24,23].
The biggest decision in building a reliable multicast protocol is how to guarantee the relia-

bility and stability of messages without sacrificing throughput or latency. Latency is defined as

the time between when a site has a packet to send and when it is delivered to the destination. A

message is defined as going stable when the sender knows all destinations have received it. This

is the point at which it no longer needs to be held for possible retransmissions. In a reliable

multicast protocol, one of factors influencing throughput is the number of ACKs sent per packet,

so it is important to minimize this. In order to provide guarantees of total ordering and atomic

delivery in the face of failures, a reliable multicast protocol will often delay delivering a packet

until after it has received one or more acknowledgments of delivery. This latency for guarantees

tradeoff is fundamental to this class of protocols, which is why RMP allows this tradeoff to be

made on a per packet basis.

Traditional protocols use positive acknowledgments (ACKs) from the destination to acknowl-

edge successful receipt of a packet. While quickly providing stability of messages, this approach

does not scale well to a multicast system, because each destination has to send an ACK for each

packet or set of packets. The use of positive acknowledgements largely defeats the advantage

of using multicast packets, because it decreases both the efficiency and the performance of the

protocol. Even though positive acknowledgment messages are small, it is because they all are

sent simultaneously that they can cause network congestion. In addition, having to process an

ACK from each destination increases the load on the sender and decreases the performance of

the protocol. One optimization is to not acknowledge every packet. In general, as the number

of packets per ACK increases, the length of time for a message to go stable increases, but the

lower the load is. As another approach, many systems use negative acknowledgments (NACKs).
Negative acknowledgments shift the burden of error detection from the source to the destina-

tions. Packets are stamped with sequential sequence numbers which destinations use to provide

reliable delivery by detecting gaps in the sequence numbers and requesting retransmission of the

packets corresponding to the gaps. Because the information that a packet has been received is

never propagated back to the sender, the senders in these protocols do not ever know for certain

that a destination has received a packet. Because of this, senders have to indefinitely keep a

copy of each packet sent if the protocol is to be considered truly reliable. In addition, a lost

packet will not be detected until another packet is received successfully, which may take a long

time if the packet is the last to be sent to the ring for a while. Because of these problems, the

RMP algorithm uses a combination of these two approaches. The basic algorithm is based on

the ideas of the protocol originally done by Chang and Maxemchuk [11, 9].

The MBusI [8] was the original motivation for RMP. It provides a central server through

which clients connect with TCP/IP streams, and an easy to use interface designed to ease the

implementation of CSCW applications. It provides both total ordering of messages and reliable

multicast,buthasverylimitedscalability,sinceall packetsmustberoutedthrougha central
point,andduplicatecopiessentto eachdestination.

TheTotemprotocol[22]isperhapsclosestto aMPin itsapproach,andhasreportedsimilar
throughputlevelsto RMPunderheavyload. It alsousesa rotatingtokenring approach,but
onlyprovidesfor asingleringfor eachbroadcastdomain.TotemavoidsusinganyACKsby
onlyallowingthecurrenttokenholdertosenddata.Thisprovideshighthroughputunderhigh
loadovera lowlatencynetwork,but provideslowerthroughputandlongerlatencyunderlow
andasymmetricalloads.In addition,becauseit onlyallowsasinglesendertotransmitat atime
it will providelowerthroughputoverlongerlatencynetworks.Toalleviatethisproblemthey
haveproposed,butnot implemented,gatewaysto link multiplebroadcastdomainstogether.

TheISISsystem[28,4] isoneof thepioneeringprotocolsin thisfield. It providescausal
orderingand,if desired,total orderingof messageson top of a reliablemulticastprotocol.
Thereliablemulticastprotocolrequiresseparateacknowledgmentsfromeachdestination,which
limits performance.A newsystemthat providescausalorderingon top of IP Multicasthas
beenimplementedwhichismuchmoreefficientthantheoldsystem[5],andwearecomparing
RMPandthisnewprotocol.

ThePsyncprotocol[6]isaningeniousprotocolthatusespiggybackedACKstoprovidecausal
orderingofmessagesanddetectionofdroppedpackets.However,bothit andthesimilarTrans
[25]andLansis[20]protocolsrequirethat all of themembersof thegroupregularlytransmit
messages.TheTransprotocolandtheToToprotocol[19]implementedon topof Lansisboth
providetotalorderingofmessages.Thesealgorithmsrequirethatat leastamajorityofthegroup
membersbeheardfrombeforeamessagecanbedelivered,whichcauseslatencyto increaseby
at leastanorderof magnitude.Forexample,for theToToprotocolto sendto a groupof 8
destinationsunderheavy,periodicloadfromallsources(thebestcase),thelatencyis23.8ms.
Thisincreasesto 114.1msforlightlyloadedpoissonsources.

TheMulticastTransportProtocol(MTP)[15]isanexampleofanasymmetricreliablemulti-
castprotocol.Onesiteisthecommunicationmasterwhichgrants"tokens"to groupmembersto
allowthemto senddata.Thesetokensprovidebothflowcontrolandtotalorderingofmessages.
Thiscausesoverdependencyonthemaster,whichlimitsbothreliabilityandperformance.MTP
alsoreliesexclusivelyonNACKsforerrorrecovery,whichlimitsreliabilityandrequiresextreme
amountsofbufferspace.

Theprotocolby CrowcroftandPaliwoda[12]isoneof thefirstprotocolsto proposereliable
multicastoveraninternetworkwhichsupportshardwaremulticast.Theprotocolprovidesdif-
ferentlevelsof reliabilityguarantees,andusespositiveacknowledgmentsfromall destinations
for reliability.Thepaperanalyzesthefloodingproblemsthat occurwithsimultaneousACKs
frommanydestinationsandproposesa windowedflowcontrolsystem,in somewayssimilar
to that usedin RMP,to alleviatetheseproblems.ThexAmpprotocol[29]is distributedbut
alsowaitsforACKsfromall destinations,andsowillexhibitperformancesimilarto theearlier
versionsof ISIS.

ThebroadcastprotocolproposedbyKaashoeket. al. [17]usesacentraltokensitetoserialize
messagesandNACKsforretransmissions.It piggybacksACKsontosentmessagesandhasthe
tokensiteregularlycontactsilentsitesinordertolimit bufferspace.Thisprotocolhasreported
verygoodlatency(aslow as1.3msfor a NULL packet)becauseit hasbeenimplemented
on topof barehardware.However,becauseeachmessagemustbe transmittedtwiceit will
fundamentallyachievelowerthroughputthanRMP- 600KB/secisaroughupperboundfor a
1250KB/secEthernet,ascomparedto 842KB/secfor RMP.Thiswill alsolimit the latency
for largermessages;asa8KBpacketin theirprotocolwill spendaminimumof 13.1msonthe
Ethernet,asopposedto 6.7msfor themessageandACKof RMP.

3 Atomicity, Reliability and Ordering

Different multicast applications require many different levels of reliability and ordering guaran-

tees in the face of transient network failures such as dropped packets. These applications also

require different atomicity guarantees in the face of site failures or partitions. For example, a

CSCW application may need packets to be reliably delivered at all sites, with the packets from

the same source delivered in the order they were sent. This application may be able to continue,

even if some sites fail away or the group partitions in two. On the other hand, a distributed

database may require that all packets be delivered in the same total order at all sites, even

if some of the sites partition away. RMP supports a wide range of guarantees on packets by

allowing different QoS levels to be specified for packets being sent to a group, and by allowing
applications to specify the minimum size of a partition that can continue to function in the face
of failures.

The basic RMP QoS levels are unreliable, reliable, source ordered, and totally ordered. They

are provided by differing the time at when packets are delivered and enabling or disabling
the duplicate detection, NACK, and ACK policies. While throughput remains similar for the

different QoS levels, higher QoS levels increase the latency of packet delivery. For example, in

the common case of few dropped packets, source ordered packets have about the same latency

as unordered packets, and totally ordered packets have about twice the latency of either.

The unreliable QoS is most similar to UDP traffic. An unreliable packet will be delivered 0,

1, or more times to a destination and there are no ordering guarantees on delivery. A reliable

packet will be delivered 1 or more times to each destination. The source ordered QoS provides

the equivalent guarantees of running a TCP socket from each source to each destination. Packets

arrive exactly once at each destination in the same order as they were sent from the sender.

Source order does not provide any guarantees on the ordering of packets from multiple senders

in the group. Totally ordered delivery serializes all of the packets to a group, delivering all of the

packets in the same order at all members of the group. Without globally synchronized clocks, it

is not possible to tell which message was "really" sent first, but total ordering guarantees that

some order will be imposed over all messages sent to a group, and that messages will be delivered

in this order at all sites. This QoS is equivalent to running a TCP socket from each source into

a central bus which serializes the packets and then sends them out through a separate TCP

socket to each destination. Totally ordered packets are also causally ordered, as per Lamport's

definition [21].

ISIS first defined the notion of virtual synchrony [28, 4]. Virtual synchrony often allows a
distributed application to execute as if its communication was synchronous, when it is actually

asynchronous. The key requirement for virtual synchrony is that all sites see the same set of

messages before and after a group membership change. In other words, for a given set of packets
delivered to a group, a membership change operation will partition these packets into the same

two sets at all sites, and all packets in the first set will be delivered at all sites before any packets

are delivered in the second set. RMP provides virtual synchrony for packets that have a QoS

of at least totally ordered. This is done by implementing each membership change as a packet
with a totally ordered QoS.

4 Fault Tolerance

A critical question in group protocols is what happens to delivery guarantees in the face of

failures or partitions. To solve this problem, RMP offers four levels of fault-tolerant guarantees:

atomic delivery within partitions, K-resilient atomic between partitions, agreed delivery between

partitions, and safe delivery between partitions. The exact semantics of agreed and safe delivery
are defined in [19]. All of these guarantees rely on a method of failure detection based on

timeouts.If communicationto oneormoregroupmembersfailsforanextendedperiodof time
(say15-30seconds),theRMPfailuremembershipalgorithmwill removethemfromthegroup.
If thisisdueto atemporarypartition,theycanlaterrejointhegroup,butasnewmembers.

Becauseamembercannotjoinbackin to aringasanoldmemberonceit hasbeenremoved,
it isnotpossibleforagroupto partitionintotwohalvesandthenrejoin.Thisisthekeyto atomic
deliverywithinpartitions.RMPguaranteesthatfor totallyorderedpackets,if anymemberin
apartitiondeliversapacket,all oftheothermembersofthat partitionwill deliverthat packet
if theywerein thegroupmembershipviewwhenthepacketwassentandif theyremainin the
groupfor asufficientperiodoftime.Sincenototallyorderedpacketwill bediscardeduntil it
hasbecomestablewithinapartition,andnopacketcanbecomestablewithinapartitionuntil
it hasbeenreceived(butnotnecessarilydelivered)byallof themembersofthepartition,if any
sitedeliversapacket,all of theothersitesin thepartitionwill receiveit beforeit isdiscarded
by that site.Onceasitehasapacket,theonlywayit will notdeliverit is if it crashes,upon
whichcaseit will bedetectedandremovedfromthegroup.

Thislevelofatomicitydoesnotprovideanyguaranteesaboutdeliveryororderingofpackets
betweenpartitions.K-resilientatomicity between partitions is the first level of guarantee that

addresses this. K is the minimum number of sites that must fail or partition away from a group

over a short period of time, in order to violate atomicity guarantees. This is provided by having

each member M verify that at least K other members have received a packet before M can

deliver it. In this case, each partition will always have at least one member which has received

all of the packets that have been delivered at any site.

The next level of atomicity is called agreed ordering, or majority resilience. Agreed ordering

guarantees that no matter how many partitions or failures occur, any members of a group that

deliver any two messages will agree on the same ordering of the messages. This level guarantees

total ordering across partitions, but not atomicity. This level of atomicity is achieved by not

allowing minimum partitions to continue and by making sure the majority of the members of

a group have a message before any member delivers it. Both of these tests require a possibly

conservative calculation of how many members are in the group, which we call MaxN. MaxN

is equal to the maximum number of members that are in any membership view for any packet

which is not yet stable.

The final level of fault tolerance is safe delivery, also called total resilient delivery. This level
requires that a packet be stable before it can be delivered. This occurs after the token has been

passed once around the ring after a packet was received. At this point, the member knows that

all other members have received it, but they may not all deliver it. It is still possible that one

or more of the sites could fail before delivering the packet. This is the highest level of atomicity

that any system such as RMP can reasonably provide.

Ordering guarantees between packets of different QoS levels are determined by the lowest

QoS of the packets in question. For example, for a set of packets S1 with source ordered QoS

and a set of packets $2 with totally ordered QoS, the best guarantee that is provided over the

union of the two sets is source ordering.

5 Group Communication

The two main options in current communication addressing are explicit and implicit addressing.
RMP supports both of these addressing models, and supports both the peer group model of
communication and the the client-server model of communication. Protocols such as TCP

and UDP require explicit naming of the destinations of communication, while systems such as

Grapevine [26] and the MessageBus [8] allow implicit naming through a publisher/subscriber

model of communication. With implicit naming, RMP processes join or "subscribe" to a group

by specifying the name of a group to join, and other processes "publish" or send messages to

if (A < MIN_PACKET &_ A < W)

then Delay sending packet until an ACK is received

// Send up to I/2 of the window at a time

S = min(P, W/2);

// Send at least MIN_PACKET bytes

S = max(S, MIN_PACKET);

// Can only send up to A bytes

S = min(S, A);

// Reduce effect of lost packets

S = min(S, MAX_PACKET);

Figure h F|ow contro|algorithm to determine size of packet to be sent

this group by using the group name or a membership view ID associated with the name. When

this model is used, messages sent to the group name are delivered automatically to all RMP

processes, if any, that are members of that group, so no explicit knowledge of the membership of

a group is needed. As explained above, RMP does this by mapping group names into multicast

address, port, TTL tuples that are used to send to other members of the group.

Instead of specifying a group by its name, RMP processes may explicitly name another RMP

process (specified by an IP address and a UDP port) that is a member of the group and request

that this member forward packets on behalf of it. In addition to allowing members to join a

group based on a process ID, rather than a name, this can also be used by a non-member or

non-multicast capable member to send packets to a group. When coupled with the notification

of members of the current membership of the group at whenever the membership changes, this

allows processes to exert explicit control over group naming and membership when desired.

6 Multi-RPC Delivery

The client-server model of communication has become widely accepted as a powerful way of

providing services to users. While RMP could support this model simply by having all clients

and servers join a group, this is often inefficient and will limit the scalability of client/server

groups. As an alternative, RMP provides facilities for RMP processes that are not members of

a group to use a multi-RPC algorithm to send data to a ring and to receive acknowledgments

of successful delivery and/or responses from a member of the group. This is a powerful feature,

for it allows multiple servers to exist in a group, and all of them can get messages from clients.

These messages can be automatically acknowledged, or a single member of the group can be
selected to handle the request and reply to it. These Non Member Data packets can be delivered

with all of the QoS levels of a Data packet sent from a group member.

7 Flow and Congestion Control

Flow and congestion control policies for reliable multicast protocols are an open problem. Be-

cause reliable multicast protocols primarily use NACKs for error detection, there is no existing
explicit feedback path with which destinations can signal losses or low buffer space to the

senders. In addition, the throughput for a multicast group should be divided up between the

members of the group who are trying to send, but the policy for this division is usually dynamic

and not known in advance. Because of this, the flow and congestion control policies used by

RMParedesignedto beorthogonalto therestof theprotocol.Flowandcongestioncontrol
policiescanbeinsertedeasilyinto theprotocol,anddifferentpoliciescanbeusedin different
environments.Asthedefault,weproposeamodifiedslidingwindowprotocolbasedontheVan
JacobsonalgorithmsusedinTCP [18].

OneproblemthatRMPfaceswithflowandcongestioncontrolis thattherotatingtokensite
introducesahigheroverheadperacknowledgmentthantraditionalprotocolssuchasTCP.This
is compoundedby theprotocolbeingmorecomplicatedthanTCP andthusrequiringmore
processingperpacket.To solvethisproblem,RMPuseslargerpacketsizesthandoesTCP.
In anerrorfreeenvironment,havingtheIP or IP Multicastlayerdo thefragmentationand
re-assemblyismoreefficientthanhavingRMI"do it. If errorsoccur,thewindowsizequickly
dropsto asingleminimumsizepacket.Thealgorithmto determinethesizeofthepacketto be
sentout (S),giventhecurrentwindowsize(W),theavailablespacein thewindow(A), andthe
offeredpacketsize(P), isshownin Figure1. Thecriticalstepin thisalgorithmis that up to
halfof theavailablewindowissentat atimeuntil themaximumpacketsizehasbeenreached.
This tradesoff asmallamountof networkutilizationin thecaseof errorsfor typicallyhigher
efficiencyofhandlingpacketsandhigherthroughput.

8 Conclusions

Data replication will emerge as an important consideration for efficiency as Internet bandwidth

and population increase, as the price-performance of processors decrease and storage capacities

grow. Distributed databases and groupware applications will depend on robust, low-level proto-

cols for reliable delivery to maintain coherence between copies of data on large numbers of host
machines.

In this paper we have described the basic questions and applications of reliable multicasting

in the conext of the development and analysis of a reliable multicast protocol. RMP is a fully

distributed reliable multicast protocol with selectable ordering, atomicity, and fault tolerant

guarantees that can be used to implement distributed applications. We have shown that aMP

provides these features with very high performance [23]. To our knowledge, RMP provides better
performance for totally ordered delivery of packets to 2 or more destinations on an Ethernet

than any other protocol. Much work has gone into providing reliable multicast services with

lower ordering guarantees because it was believed that the performance of a totally ordered

multicast protocol was inherently low. Our experience with RMP suggests that this is not the

case, and that an efficient reliable multicast service can provide total ordering of messages for
only a small latency penalty. Because of its use of multiple groups, an optional client-server

architecture, its fully distributed nature, and its flow and congestion control algorithms, we

expect RMP to scale gracefully and efficiently to large groups spread over a large internetwork.

Finally, RMP can take technologies such as wireless and satellite communications that support

broadcast and multicast transmission. Initial results confirm these hypotheses and we plan to
continue our analysis in the near future.

References

[1] T. Bell J. Adam and S. Lowe. Technology 1996: Communications. IEEE Spectrum,
33(1):30-41, January 1996.

[2] R. D. Barbara Alonso and H. Garcia-Molina. Data caching issues in an information retrieval

system. IEEE Transactions on Information Systems, 1989.

[3] K. ScottBarry,M.andS.Weismuller.A distributedcomputingmodelfortelemetrydata
processing.In Proceedings of 9th NASA/GSFC Conference on Space Applications of Arti-
ficial Intelligence, May 1994.

[4] K. Birman. The Process Group Approach to Reliable Dsitributed Computing. Communi-
cations of the ACM, 36(12):37-53, December 1993.

[5] K. Birman and T. Clark. Performance of the Isis Distributed Computing Toolkit. Technical
Report TR-94-1432, Cornell University, December 1994.

[6] L. L. Peterson N. C. Buchholz and R.D. Schlichting. Preserving and using context informa-

tion in interprocess communication. ACM Transactions on Computer Systems, 7(3):217-
246, August 1989.

[7] J. Callahan and T. Montgomery. An approach to verification and validation of a reliable

multicast protocol. In Proceedings of the A CM Internation Symposium on Software Testing
and Analysis (ISSTA), January 1996.

[8] A. Carroll. ConversationBuilder: A Collaborative Erector Set. PhD thesis, Department of
Computer Science University of Illinois, 1993.

[9] J. M. Chang and N. F. Maxemchuk. Reliable Broadcast Protocols. ACM Transactions on

Computer Ssystems, 2(3):251-273, August 1984.

[10] J.M. Chang. Simplifying distributed database systems design by using a broadcast network.
In SIGMOD '84, pages 223-233, June 1984.

[11] J.M. Chang and N.F. Maxemchuk. A broadcast protocol for broadcast networks. In GLOB-

COM '83, December 1983.

[12] J. Crowcroft and K. Paliwoda. A multicast transport protocol. In ACM SIGCOMM '88,
pages 247-256, 1988.

[13] M. Schwartz Danzing, P. and R. Hall. A case for caching file objects inside internetworks.

In Proceedings of the ACM SIGCOMM '93, pages 239-248, September 1993.

[14] S. Deering. Host Extensiosn for IP Multicasting. Technical Report RFC-1112, IETF,

August 1989.

[15] S. Armstrong A. Freier and K. Marzullo. Multicast Transport Protocol. Technical Report

RFC-1301, IETF, February 1992.

[16] Object Management Group. The common object request broker: Architecture and specifi-

cation. Technical Report 91.12.1, Object Management Group, 1991.

[17] M. F. Kaashoek A. S. Tanenbaum S. F. Hummel and H. E. Bal. An efficient reliable

broadcast protocol. Operating Systems Review, 23(4):5-19, October 1989.

[18] V. Jacobson. Congestion Avoidance and Control. In SIGCOMM Proceedings, pages 314-
328. ACM, 1988.

[19] D. Dolev S. Kramer and D. Malki. Early delivery totally ordered multicast in asynchronous

environments. In 23rd Annual International Symposium on Fault-Tolerant Computing
(FTCS}, pages 544-553, June 1993.

[20] Y. Amir D. Dolev S. Kramer and D. Malki. Transis: A Communication Sub-system for

High Availability. Technical Report CS9113, Hebrew University of Jerusalem, November
1991.

[21] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System. Commu-

nications of the ACM, 21(7):558-565, July 1978.

[22] D. Agarwal P. Melliar-Smith and L. Moser. Totem: A Protocol for Messaging Ordering in

a Wide-Area Network. In First ISMM International Conference on Computer Communi-
cations and Networks, pages 1-5, June 1992.

10

[23]B.WhettenT. MontgomeryandS.Kaplan. A High Performance Totally Ordered Multicast

Protocol. In Theory and Practice in Distributed Systems, number 938 in LCNS. Spring
Verlag, 1994.

[24] T. Montgomery. Design, Implementation, and Verification of the Reliable Multicast Pro-

tocol. Master's thesis, West Virginia University, December 1994.

[25] P. M. Meillar-Smith L. E. Moser and V. Agrawala. Broadcast protocols for distributed

systems. IEEE Transactions on Distributed Systems, 1(1):17-25, January 1990.

[26] A. Birrell R. Levin R. Needham and M. Schroeder. Grapevine: An exercise in distributed

computing. Communications of the ACM, 25(4):260-274, April 1982.

[27] K. Ravindran and X. T. Lin. Structural complexity and execution efficiency of distributed

application protocols. In Proceedings ACM SIGCOMM '93, pages 160-169, September
1993.

[28] K. Birman A. Schiper and P. Stephenson. Lightweight Causal and Atomic Group Multicast.

ACM Transactions on Computer Systems, 9(3):272-314, August 1991.

[29] Verissmo. xamp: A multi-primitive group communications service. In Proceedings of the

11th Symposium on Reliable Distributed Computing, 1992.

[30] Y. Wu. The specification-based validation ofrmp. Master's thesis, West Virginia University,
December 1995.

11

